Original Research

An assessment of Discectomy Surgery on Prolapsed Lumbar Intervertebral Disc

Dr. Erfanul huq siddiqui¹, Dr. Sheikh Forhad², Dr. Jannat Sultana³, Dr. Md Shamsul Alam⁴, Dr. Anjum Ara⁵

¹Consultant Orthopaedic, Department of Orthopaedic Surgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. ²Consultant Orthopaedic, Department of Orthopaedic Surgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh ³Medical Officer, Department Paediatric Medicine, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh ⁴Junior consultant, Department of Orthopedic Surgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh

⁵Department of Obstetrics and Gynaecology, *Bangabandhu Sheikh Mujib Medical University (BSMMU)*, Dhaka, Bangladesh

Address for Correspondence:

Dr. Erfanul huq siddiqui ¹ Consultant Orthopaedic, Department of Orthopaedic Surgery, *Bangabandhu Sheikh Mujib Medical University (BSMMU)*, Dhaka, Bangladesh.

Key words: *Discectomy surgery, Prolapsed, Lumbar, Intervertebral disc, Pain, Orthopedics*

Article Information:

 Received Date:
 Oct 20, 2022

 Revised Date:
 Nov 02, 2022

 Accepted Date:
 Nov 02, 2022

 Published Date:
 Dec 01, 2022

Abstract

Background: Basically, human backbone or spinal column is of a chain of bones also known as vertebrae. Spinal cord runs through the spinal column. Lumbar discectomy is a type of surgery to fix a disc in the lower back portion of human body. This surgery uses smaller cuts (incisions) than an open lumbar discectomy. We have very few proved data regarding the effectiveness of discectomy surgery on prolapsed lumbar intervertebral disc.

ACCESS

Aim of the study: The aim of this study was to assess the role of discectomy surgery on prolapsed lumbar intervertebral disc.

Methods: This was a prospective observational study which was conducted at the Department of Orthopedics Surgery in Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh during the period from January 2017 to December 2017. In total 38 patients with low back pain selected for discectomy surgery on prolapsed lumbar intervertebral disc were enrolled as the study population. This study was approved by the ethical committee of the mentioned hospital. Proper written consents were taken from all the participants before starting data collection. A pre-designed questionnaire was used in patent data collection. Radicular pain was observed by visual analogue score and disability status was done by using Oswestry disability index. By using modified Macnab criteria, outcome of the surgery was determined. All data were processed, analyzed and disseminated by MS Office and SPSS version as per need.

Result: In our study as postoperative complication dural tear, superficial wound infection and foot drop were observed in 57.14% (Highest), 28.57% and 14.29% (Lowest) participants respectively. In analyzing radicular pain among the participants, we observed that VAS score had been reduced to 1.6 ± 1.2 from 7.2±5.4 within one year of surgery which was 2.7 ± 1.3 at immediate postoperative period. On the other hand, in analyzing Disability status among the participants we observed that, ODI index had been reduced to 10 ± 1 from 64 ± 8 within one year of surgery which was 17 ± 6 at immediate postoperative period. According to the Modified Macnab Criteria in analyzing the final outcome among the participants we observed 52.63%, 39.47%, 5.26% and 2.63% participants got 'Excellent' (Highest), 'Good', 'Fair' and 'Poor' (Lowest) results respectively.

Conclusion: In terms of reduction of pain, complication and disability scores it was noted that, in the surgery of prolapsed lumbar intervertebral disc the surgical outcome after one year period of discectomy is quite satisfactory. Considering the cost effectiveness and short treatment duration this surgical method may consider as the choice of method for treating patients with prolapsed lumbar intervertebral disc.

INTRODUCTION

Basically, human backbone or spinal column is of a chain of bones also known as vertebrae. Spinal cordruns through the spinal column. Lumbar

discectomy is a type of surgery to fix a disc in the lower back portion of human body. This surgery uses smaller cuts (incisions) than an open lumbar discectomy. We have very few proved data regarding the effectiveness of discectomy surgery on prolapsed lumbar intervertebral disc. Oppenheins and Krause accomplished the first fruitful surgical excision of a herniated intervertebral disc in 1909. Unfortunately they could not recognize the excised tissue as disc material and interpreted it as an enchondroma.1 Dandy reported removal of disc tumour or chordoma from patients with sciatica in 1929.² In 1932 Barr attributed the source of sciatica to the herniated lumbar disc.³ In 1939 Seemes presented a new procedure to remove the ruptured interverterbral disc that included subtotal laminectomy and retraction of the dural sac to expose and remove the ruptured disc with the patient under local anaesthesia.⁴ Love in the same technic have done successful removal of disc independently.⁵ Standard procedure for disc removal was total laminectomy followed by transdural approach of the disc.¹ Mixter and Barr⁶ proposed lumbar fusion after excision of the disc to prevent instability. But Frymoyer et al⁷ and others indicate that there is little if any advantage to the addition of spinal fusion. Discectomy through fenestration remains the most common method for this condition in which conservative management has failed. Primary discectomy gives good results, but for revision surgery these results are less certain and the risks greater⁸. Many studies have looked at rates of recurrence which are reported to vary from 3% to 19%⁹. In this study we have examined the rate of recurrence, and identified the risk factors which would indicate the likelihood of a revision operation being required¹⁰. The objective of this study was to explore the outcome of primary discectomy operation in prolapsed lumbar intervertebral disc (PLID).

OBJECTIVES

General Objective:

• To assess the role of discectomy surgery on prolapsed lumbar intervertebral disc.

Specific Objective:

- To collect data regarding demographic status of patients with prolapsed lumbar intervertebral disc.
- To collect data regarding disc level involvement of patients with prolapsed lumbar intervertebral disc.

- To collect data regarding side involvement of patients with prolapsed lumbar intervertebral disc.
- To collect data regarding outcomes among patients with prolapsed lumbar intervertebral disc.

METHODOLOGY & MATERIALS

This was a prospective observational study which was conducted at the Department of Orthopedics Surgery in Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh during the period from January 2017 to December 2017. In total 38 patients with low back pain selected for prolapsed discectomy surgery on lumbar intervertebral disc were enrolled as the study population. This study was approved by the ethical committee of the mentioned hospital. Proper written consents were taken from all the participants before starting data collection. А pre-designed questionnaire was used in patent data collection. Radicular pain was observed by visual analogue score and disability status was done by using Oswestry disability index. By using modified Macnab criteria, outcome of the surgery was determined. After operation follow up were done on 6 weeks, 12 weeks, 6 months and 1 year. According to the inclusion criteria of this study patients with dominant leg pain rather than back pain, severe motor and sensory deficits, progressive neurological deficits with sciatica, persistent pain hampering daily activities, and restricted straight leg raising test and positive radiographic or magnetic resonance imaging (MRI) findings were included as study people. On the other hand, patients of PLID who had spinal instability, other spinal pathology, congenital anomaly, cauda equina syndrome were excluded. Only primary cases were included and recurrent cases were not enrolled in this current study. After selection as a study people, patients were made ready for primary discectomy operation. All the prerequisites for operative procedures and anaesthesia were followed for every patient. At the initiation of operation, a 3.5 cm midline incision was completed at the affected level and to approach the interlaminar space the para spinal muscles were elevated and the space was exposed with a Micro lumbar retractor. The nerve root was exposed using

unilateral flavectomy and retracted medially or laterally according to the disc position. All the loose materials were removed through transverse annulotomy. The midline structures were not handled. Post operatively, all the patients could mobilize within 24 hours and discharged on about day 7 (5-8 days) and suture were removed on day 14. All patients underwent 4 follow up sessions on 6 weeks, 12 weeks, 6 months and on 1 year. The variables which were recorded in the present study were pain free interval, side and extent of herniation, operating time, length of hospital stay and pre- and post-operative visual analogue score (VAS) for pain. The clinical outcome was evaluated using the Criteria¹¹. modified Macnab All data were processed, analyzed and disseminated by MS Office and SPSS version as per need.

RESULT

In this study the mean (±SD) age of the participants was 35±7.25 years. Among them the highest number of participants were from 21-40 years' age group which was 50%. Besides this 15.79%, 23.68% and10.53% participants were from >20, 41-60 and >60 years' age groups respectively. In this study 61% participants were male whereas 39% were female. So, male was dominating in number and the male-female ratio was 1.53:1. In this study, among all the participants as disc level L2-3, L3-4, L4-5 and L5-S1 were involved in 5.26% (Lowest), 10.53%, (Highest) participants 31.58% and 52.63% respectively. On the other hand- right, left and bilateral side involvement were found in 39.47%, 47.37% (Highest) and 13.16% (Lowest) participants respectively. In our study as postoperative complication dural tear, superficial wound infection and foot drop was observed in 57.14% (Highest), 28.57% 14.29% (Lowest) participants and respectively. In analyzing radicular pain among the participants, we observed that VAS score had been reduced to 1.6±1.2 from 7.2±5.4 within one year of surgery which was 2.7±1.3 at immediate postoperative period. On the other hand, in analyzing Disability status among the participants, we observed that ODI index had been reduced to 10±1 from 64±8 within one year of surgery which was 17±6 at immediate postoperative period. According to the Modified Macnab Criteria in

analyzing the final outcome among the participants we observed 52.63%, 39.47%, 5.26% and 2.63% participants got 'Excellent' (Highest), 'Good', 'Fair' and 'Poor' (Lowest) results respectively.

 Table 1: Demographic status distribution of participants (n=38)

Characteristics	Ν	%
Age (Years)		
Mean ± SD	35±7.25	
Age group (Year)		
>20	06	15.79
21-40	19	50.00
41-60	09	23.68
>60	04	10.53
Gender		
Male	23	60.53
Female	15	39.47

Table 2: Involved disc level among participants(n=38)

Involved disc level	Ν	%
L2-3	02	5.26
L3-4	04	10.53
L4-5	12	31.58
L5-S1	20	52.63
Total	38	100

 Table 3: Involved side among participants (n=38)

Involved side	Ν	%
Right	15	39.47
Left	18	47.37
Bilateral	05	13.16
Total	38	100

Table 4: Postoperative complication among participants

Postoperative complication	Ν	%
Dural tear	04	57.14
Superficial wound infection	02	28.57
Foot drop	01	14.29
Total	07	100

 Table 5: Radicular pain and disability status among participants (n=38)

Stage	Radicular Pain VAS score	Disability status ODI index
Preoperative	7.2±5.4	64±8
Postoperative	2.7±1.3	17±6
After one year	1.6±1.2	10±1

ODI: Oswestry Disability Index

 Table 6: Final outcome as per Modified Macnab

 Criteria among participants (n=38)

Outcome	N	%
Excellent	20	52.63
Good	15	39.47
Fair	02	5.26
Poor	01	2.63
Total	38	100

DISCUSSION

The aim of this study was to assess the role of prolapsed discectomy surgery on lumbar intervertebral disc. In this study the mean (±SD) age of the participants was 35±7.25 years. Among them the highest number of participants were from 21-40 years' age group which was 50%. Besides this 15.79%, 23.68% and 10.53% participants were from >20, 41-60 and >60 years' age groups respectively. In this study 61% participants were male whereas 39% were female. So, male was dominating in number and the male-female ratio was 1.53:1. Morgan Hough et al.¹² also found near about the similar findings in their study. They reported mean age 39 years with 56.7% male patients. They also noted 58.2% cases had L5-S1 and 41.2% had L4-L5 disc involvement. We have found also most of the cases had L5-S1 involvement. In a study in Bangladesh, Kamrul et al. also found more male patients (73%)¹³. Kyeng Soo Suk et al. stated in their study that, during the primary discectomy procedure, the authors performed partial discectomy of degenerated and fragmented discs, which meant that, a relatively smaller quantity of disc material was removed from a contained disc than from a no contained disc. Therefore, most recurrent disc herniation occurred after primary discectomy of a contained disc (27/28, 96.4%).14 In our study as

postoperative complication dural tear, superficial wound infection and foot drop was observed in 57.14% (Highest), 28.57% and 14.29% (Lowest) participants respectively. In this study according to the Modified Macnab Criteria in analyzing the final outcome among the participants we observed 52.63%, 39.47%, 5.26% and 2.63% participants got 'Excellent' (Highest), 'Good', 'Fair' and 'Poor' (Lowest) results respectively. Morgan Hough et al. reported 8.7% cases required further surgery. Here 5.33% cases developed postoperative only complications like Dural tear, foot drop and superficial wound infection. Kamrul et al. also reported the similar complications and findings were similar¹³. In our study, in analyzing radicular pain among the participants, we observed that VAS score had been reduced to 1.6±1.2 from 7.2±5.4 within one year of surgery which was 2.7±1.3 at immediate postoperative period. On the other hand, in analyzing Disability status among the participants, we observed that ODI index had been reduced to 10±1 from 64±8 within one year of surgery which was 17±6 at immediate postoperative period. In the present study it was noted that pain status was significantly reduced from pre-operative status to one year after surgery status. Kamrul et al. also reported that in their study pain reduced (VAS) from 7.7 to 1.3 after primary discectomy operation¹³. Disability rate was reduced significantly from preoperative 65 to post-operative 9 (p=0.001), the results correspondence with Kamrul et al. report¹³.

LIMITATIONS OF THE STUDY

This was a single centered study with a small sized sample. So, the findings of this study may not reflect the exact scenario of the whole country.

CONCLUSION

In terms of reduction of pain, complication and disability scores it was noted that, in the surgery of prolapsed lumbar intervertebral disc the surgical outcome after one year period of discectomy is quite satisfactory. Considering the cost effectiveness and short treatment duration this surgical method may consider as the choice of method for treating patients with prolapsed lumbar intervertebral disc. For getting more reliable information we would like to recommend for conducting more studies in several places with larger sized samples.

References

- William KD, Park AL. The back. In: Canale ST (ed). Campbell's operative orthopaedics. 10th edn. Philadelphia Pennsylvania: Mosby, 1998: 1955-2028.
- 2. Dandy WE. Loose cartilage from the intervertebral disc simulating tumor of the spinal cord. Orth Surg 1929; 19: 1660.
- 3. Barr JS, Hampton AO, Mixter WJ. Pain low in the back and sciatica due to lesions of the intervertebral disc. JAMA 1937; 109: 1265.
- Semmes RE. Diagnosis of ruptured intervertebral disc without contrast myelography and comment upon recent experiences with modified laminectomy for their removal. Yale J B Med 1929; 11: 333.
- 5. Love JG. Removal of intervertebral disc without laminectomy. Proc staff meet Mayo clinic 1930; 14: 8000.
- 6. Mixter WJ, Barr JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 1934; 211: 210.
- Frymoyer WJ, Hailey EN, Howe J. A comparison of radiographic finding in fusion and nonfusion patients ten or more years following lumbar disc surgery. Spine 1934; 5: 435.
- Herron L (1994) Recurrent lumbar disc herniation: results of repeat laminectomy and discectomy. J Spinal Disord 7(2): 161-166.
- Keskimaki L, Seitsalo S, Osterman H, Rissanen P (2000) Reoperations after lumbar disc surgery. Spine 25(12): 1500-1508.

- 10. Weir BK, Jacobs GA (1980) Reoperation rate following lumbar discec- tomy: an analysis of 662 lumbar discectomies. Spine 5(4): 366-370.
- 11. Macnab IA (1971) Negative disc exploration: an analysis of the causes of nerve-root involvement in sixty-eight patients. JBJS 53(5): 891-903.
- 12. Primary and revision lumbar discectomy A 16-Year Review from One Centre Cvj Morgan-Hough, PW Jones, SM Eisenstein From Robert Jones and Agnes Hunt Hospital, Oswestry, and Keele University, Keele, England.
- Kamrul A, Najmus S, Alamgir H, Shahedul IK, Awal MA (2012) Discecto- my for primary and recurrent prolapse of lumber intervertebral discs. journal of Orthopaedic Surgery 20(1): 7-10.
- 14. Suk KS, Lee HM, Moon SH, Kim NH (2001) Recurrent lumbar disc her- niation: results of operative management. Spine 26(6): 672-676.

